

MBT-003-1164002 Seat No. _____

M. Sc. (Mathematics) (Sem. IV) (CBCS) Examination

April / May - 2018

Maths: Integration Theory (CMT - 4002)
(New Course)

(New Course)		
Faculty Code: 003 Subject Code: 1164002		
Γin	ne : 2	$2\frac{1}{2}$ Hours] [Total Marks : 70]
lns	truct	tions: (1) There are five questions.
		(2) All questions are compulsory.
		(3) Each question carries 14 marks
1	Ans	wer the following: 7×2=14
	(a)	is a lower semi continues on a topological space X.
	(b)	Define complete measure on a measurable space and give an example of a complete measure.
	(c)	True or False? Justify. If γ is a signed measure on
		$(X, A,), A \in A$ and $\gamma(A) = 0$ then A is the null set w.r.t γ .
	(d)	The lebesuge measure on $\mathbb R$ is
	(e)	The cumulative function F of a finite barie measure on the real line is
	(f)	If (X, A, μ) is a complete measure space then $\{s \mid s \text{ is simple measurable on X and } \mu \{x \in X \mid s(x) \neq 0\} < \infty \}$ is dense in

2 Answer any two:

 $2 \times 7 = 14$

- (a) Define signed measure on a measurable space. If μ_1, μ_2 are two signed measures on a measurable spaces (X, A) then state and prove the condition under which $\mu_1 \mu_2$ is a signed measures on (X, A).
- (b) Define positive set w.r.t. a signed measure. Prove that the countable union of positive sets is positive.
- (c) State and prove Lebesgue decomposition theorem for a σ -finite measure w.r.t. another σ -finite measure on a measurable space.

3 Answer the following:

 $2 \times 7 = 14$

- (a) State, without proof, Hahn decomposition theorem. Is Hahn decomposition is unique? Justify.
- (b) Prove that if (X,A) is a measurable space and $f:X\to [0,\infty]$ be measurable then there exists a sequence $\{S_n\}_{n=1}^\infty$ of simple measurable function such that
 - (i) $0 < S_1 < S_2 < \dots < S_n \dots < f$; on X.
 - (ii) $\lim_{n\to\infty} S_n = f(x); \forall x \in X.$

OR.

- (a) State without proof, Jordan decomposition theorem. Is Jordan decomposition is unique? Justify.
- (b) Prove that if X be a countable set and μ be the counting measure then $L^{P}(\mu) \cong l^{P}; \forall 1 \leq P < \infty$.

4 Answer any two:

 $2 \times 7 = 14$

- (a) State, without proof, Caratheodary extension theorem. Give an example to show that σ -finite assumption in the theorem cannot be dropped.
- (b) State, without proof, Fubim's theorem and Tonelli's theorem.
- (c) If μ, γ are measures on a measurable space then with usual notation prove that $\mu << \gamma$ and $\mu \perp \gamma \Rightarrow \mu = 0$. Does $\mu << \gamma \Rightarrow \gamma << \mu$? Justify.

5 Answer any two:

 $2 \times 7 = 14$

- (a) (i) True or False? Justify. $\mu \ \ \text{is outer regular} \ \Rightarrow \mu \ \ \text{is inner regular}.$
 - (ii) Define G_{δ} sets and F_{σ} sets.
- (b) Define:
 - (i) a locally compact and
 - (ii) a hausdorff space. Is the set of rationals in $\mathbb R$ is locally compact ?
- (c) Let X is a locally compact hausdroff space. Prove that $Ba(X) = the \ \sigma$ -algebra generated by compact G_{δ} sets in X.
- (d) Define σ -bdd set in a locally compact hausdorff space X. If $E \in Ba(X)$ then prove that either E or X \ E is σ -bdd.